
Two-layer model showing a variety of pattern types near nonequilibrium phase transitions

Michael Bestehorn
Institut für Theoretische Physik und Synergetik, Universita¨t Stuttgart, Pfaffenwaldring 57/4, 70550 Stuttgart, Germany

~Received 6 November 1995!

It is shown analytically as well as by direct numerical integration that a simple model of two coupled
two-dimensional order parameter equations may lead to the formation of a large variety of basic pattern types.
The same pattern symmetries have been obtained recently in reaction-diffusion systems and are known as
mixed states or beans and triangles. Finally we discuss a nonvariational extension of our model that may also
show time-stable rhombic structures.@S1063-651X~96!03305-3#

PACS number~s!: 47.20.Ky, 82.20.Mj

I. INTRODUCTION

A large number of spatially extended pattern forming sys-
tems far from equilibrium were extensively studied both ex-
perimentally and theoretically in the last years~for a review
see @1# and references therein!. Until now interest was
mainly focused on two spatial dimensions. Two-dimensional
~2D! order parameter equations could be derived directly for
the case of the three-dimensional~3D! convection instability
in various systems and show good agreement between 3D
experiments or direct 3D-numerical solutions of the hydro-
dynamic equations@2#. Beyond the reduction on two spatial
dimensions the order parameter equations have a unifying
character and allow for the classification of quite different
systems into a few classes of basic instabilities@3,4#. In this
paper we shall be concerned with an instability of a tempo-
rally and spatially homogeneous system that selects a finite
critical wave number in an isotropic two-dimensional plane,
leading to a typical length scale in real space. Moreover, the
unstable modes may grow with a real rate, leading very often
to transient states that end in stationary, spatially more or
less ordered structures. We adopt the nomenclature of@1#
and call this a type IIIs instability. Type IIIs instabilities are
encountered in many systems. We mention convection in a
pure fluid @4#, transverse optical patterns in a laser with a
nonlinear medium@5#, and the chemical structures caused by
the Turing instability@6#. The normal form of type IIIs reads

] tC~x,t !5L~«,D!C~x,t !1N„C~x,t !,d…, ~1!

whereC(x,t) is the real order parameter field depending on
the two spatial coordinatesx5(x,y) andL is a linear differ-
ential operator that accounts for the linear growth of modes
with a wavelength in the vicinity oflc52p @7#

L~«,D!5«2~11D!2. ~2!

HereD is the 2D Laplacian and« is the control parameter
where«>0 denotes instability of the homogeneous state and
the emergence of spatial structures.N(C,d) is a nonlinear
~in general, also nonlocal! function of C as well as of its
spatial derivatives,d stands for one or more coefficients that
may be controlled also from the outside. Without further
requirement to the symmetry ofN, the generic patterns pro-
duced by~1,2! at onset are regular hexagons@8#, in agree-

ment with the first experimental results in convection by Be´-
nard@9#, as well as in reaction diffusion systems, there found
for the first time by Castetset al. @10# and later by Ouyang
and Swinney @11# examining the chlorite-iodide-
malonic-acid ~CIMA ! reaction. If the condition
N(C,d)52N(2C,d) is fulfilled, stripes ~or rolls! are
stable above threshold. A general solution of~1! in lowest
order of« reads

C~x,t !5(
j

3

j j~ t !exp~ ik jx!1c.c., ~3!

with k11k21k350 and uk j u51. In ~3! j15j25j35Z cor-
responds to~1!hexagons ~Z real, Z.0), (2)hexagons
(Z,0), and triangles ~ReZ50, ImZÞ0). Here
(1,2)hexagon denotes the case whereC is ~positive, nega-
tive! valued in the center of each hexagon. The case of only
one nonvanishingj j corresponds to stripes. Rhombic cells
are obtained if two amplitudes in~3! are equal and the third
vanishes. Finally a mixture between hexagons and stripes,
named ‘‘mixed state ’’@12# or, synonymously ‘‘beans’’@13#
is presented byj1.j25j3 and real positivej j . A linear
analysis in the vicinity of~3! shows that (1,2)hexagons
and/or stripes may be stable, depending on the form of
N(C) and of the value of« @14#. All other structures are
unstable.

II. THE MODEL

Nevertheless triangles, beans, and rhombs were found by
different groups in the CIMA reaction@12,15,16#. Recently,
De Kepper@15# argued that the reason for the occurrence of
these types could be the existence of the spatial extension of
the chemical reactor vertical to the plane where the patterns
are usually visualized~Fig. 1!. The vertical size could be
smaller or of the same order than the critical wavelength. To
sustain the reaction far from equilibrium, the reactor must be
fed continuously from the outside. Therefore a gradient in
the control parameters, a so-called parameter ramp may oc-
cur, leading to different selected patterns in the different ver-
tical planes. To demonstrate the stability of triangles and
beans we studied the simplest possible two-layer model ob-
tained by two linearly coupled Haken equations@3#
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] tC1~x,t !5L~«1 ,D!C1~x,t !1aC2~x,t !1d1C1
2~x,t !

2C1
3~x,t !,

] tC2~x,t !5L~«2 ,D!C2~x,t !1aC1~x,t !1d2C2
2~x,t !

2C2
3~x,t !, ~4!

wherei51,2 denotes the two vertically stratified layers. The
linear coupling reflects diffusion (a.0) of the concentration
fields in vertical direction. To model parameter ramps of the
control parameters we allow for different values ofd and«
in the two layers. Looking through both layers, the visualized
structure is given by a superposition of the patterns in each
layer

C~x,t !5C1~x,t !1C2~x,t !. ~5!

Our model~4! has a potential of the form

V@C1 ,C2#52
1

2E dxdy$C1L~«1 ,D!C11C2L~«2 ,D!C2

12aC1C21
2
3 ~d1C1

31d2C2
3!2 1

2 ~C1
4

1C2
4!%. ~6!

The most interesting results discussed in the next section
are obtained for substantially different values ford i , namely,
where the two coefficients have opposite signs. This can be
justified by the assumption that the control parameters of the
system are in a region whered of a one layer model goes
through zero, i.e., where the transition from~1! to ~2! hexa-
gons occurs via stripes~this situation is similar to convection
in a pure fluid, where the transition from gas hexagons to
liquid hexagons can be obtained for certain fluid parameters
@17#!. The ‘‘unfolding’’ of d in the third dimension by means
of a parameter ramp may give rise for a variety of stable
basic structures as will be shown now.

III. RESULTS

To demonstrate the stability of the above explained basic
pattern types we introduced the expressions

C1~x,t !5(
j

3

j j~ t !exp@ ik j~x1b1!#1c.c.,

C2~x,t !5(
j

3

h j~ t !exp@ ik j~x1b2!#1 c.c. ~7!

into ~6! and search for the absolute minimum ofV with
respect to the amplitudesj i ,h i and the shiftb1 ~due to trans-
lation symmetry of the whole system only the relative shift
b12b2 is important and we may put arbitrarilyb250). The
resulting perfect patterns may be classified as above. Figure
2 shows a phase diagram in thed i plane for fixed

FIG. 1. Schematic drawing of the chemical reactor. At the glass
plates, the concentration of the control variables is kept constant by
coupling to the reservoirsA andB from the outside and a parameter
ramp can occur in the vertical direction. This may lead to the sta-
bilization of different pattern types in the two layers. The visually
obtained pattern is simply regarded as a superposition of the pat-
terns formed in each layer.

FIG. 2. Parameter plane for fixed« i50.07
and a50.03. The patterns plotted are those
which minimize the potential~6! and that are
therefore globally stable.
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«15«250.07 anda50.03. If the coefficientsd i have oppo-
site signs and about the same values pattern selection goes to
~1!hexagons in one layer,~2!hexagons in the other. In the
coupled system, this ‘‘frustration’’ results either in a stripe
pattern~small d i) in both layers or in the formation of the
two oppositely orientated hexagons~large d i). The latter
have a relative shiftub1u5lc/3 andb1 parallel to one of the
k j . A superposition according to~5! yields a symmetric
~with respect toC→2C) triangular structure. Asymmetric
triangles are obtained near the borders to the bean states.
Here, a superposition of hexagons and triangles in one layer,
pure hexagons in the other, takes place.

Mixed states or beans are obtained if one layer shows
hexagons, the other stripes. This is the case for oned i large,
the other near zero. Experimental evidence for such a con-
figuration is given in@13#. There the two planes with the

different structures can be distinguished clearly and the pat-
tern seen by superposition can be identified as a mixed state.

Rhombs are only metastable in our model and can never
totally minimize the potential. Depending on parameters,
beans or asymmetric triangles are globally stable and there-
fore eventually the preferred structure. Thus rhombs are ob-
served mainly during long transient phases. To demonstrate
this we performed a direct numerical solution of~4!. The
method, a pseudospectral semi-implicit scheme was devel-
oped and used before for the one layer problem and is de-
scribed in detail in@18#. Figure 3 shows the spatiotemporal
evolution of randomly distributed initial patterns in both lay-
ers in a parameter region where rhombs are metastable. They
are present in large regions during the transient phase but
finally vanish and give way to a regular time-stable structure
of triangles. At first sight this seems to be in contradiction

FIG. 3. Numerical solution of the model~4! in
a domain between beans and triangles where
rhombs are metastable (d1520.7,d250.35).
They are formed as transients in the circled areas
and vanish eventually. The state att55000 is
stable. Plotted are contour lines of the superposi-
tion @Eq. ~5!#, bold: C50, thin: C5Cmin/2.
Time is in dimensionless units of Eqs.~4!.
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with @16#, where stable rhombs are selected under certain
conditions. Gunaratne, Ouyang, and Swinney argued quite
right that metastable rhombs may follow from a 2D-
variational model. Then they state that the linear stability
should be sufficient for the selection of rhombs. In our opin-
ion, and this is also supported by a numerical integration of
any variational model including spatial diffusion, the even-
tually selected pattern is always the one leading to the lowest
potential. If there exist some regions where the globally
stable pattern has been formed, the domain walls will move
in such a way that these regions blow up until the metastable
domains have completely vanished. Nevertheless stable
rhombs found experimentally@16# can be explained in sev-
eral ways:~1! The initially prepared rhombic pattern is per-
fect and no seed for the globally stable pattern exists. This
seems to be the case in Fig. 6~b! of @16#. ~2! domain bound-
aries between rhombs and the globally stable pattern are
pinned by the small scale structure or defects~on pinning of
a wall between stripes and hexagons see, e.g.,@19#!. ~3! The
dynamics of the pattern cannot be described by a variational
model, as discussed in the following section. This view is
supported by the fact that rhombs are, until now, never ob-
tained in the Be´nard convection. Convection in a pure fluid
just above onset behaves very much like a variational system
@20# and should give no reason for the selection of a meta-
stable pattern~see, e.g.,@22#!.

An extension of~4! could be the inclusion of nonlinear
coupling terms between the two layers. This could also give
rise to nonvariational models and the stabilization of other
structures, e.g., rhombs. Nonvariational systems may also
show stable states that are far from being perfect but exhibit
a lot of defects and grain boundaries between stripes with
different orientation in both layers. Figure 4 shows a time-
stable state of a model with a nonvariational and nonlinear
extension

] tC1~x,t !5L~«1 ,D!C1~x,t !1d~C12C2!
22C1

3~x,t !,

] tC2~x,t !5L~«2 ,D!C2~x,t !1d~C12C2!
22C2

3~x,t !.
~8!

Let C(x,zi)[C i(x) be a three-dimensional concentration
field with zi} i , then the quadratic term in~8! may be justi-
fied by introducing a vertical gradient of the form
@]zC(x,z)#

2. Now layer one shows clearly the stable
rhombs, layer two a mixed state that is also dominating the
superposition. In contrast to the transient evolution of the
potential model where in the long time limit all defects and
domain boundaries eventually vanish and a perfect pattern
remains stable, the steady state obtained with~8! is spatially
quite irregular.

IV. CONCLUSIONS

We showed that even the simplest model of two linearly
coupled 2D-order parameter equations may account for a
large variety of patterns. The existence of pattern types like
triangles or mixed states follows naturally, and both of them
were obtained experimentally in Turing systems. More com-
plicated models can be discussed: A fully three-dimensional
extension of~1,2! in the case of a relatively large vertical
extension of the reactor was studied in@23# with respect to
hexagons orientated in the basic planes of the three spatial
dimensions. Since this problem is much more complex then
our model, an analysis in the way of~7! is not possible and a
full classification of stable basic patterns is still lacking.

The results of the present paper support strongly the hy-
pothesis of De Kepper: triangles, mixed states, and even
rhombs, although unstable or at most metastable solutions of
the generic 2D-order parameter equation of a type IIIs insta-
bility, can be shown to be globally stable in a simple model
that takes the spatial dimension vertically to the reactor into
account and that allows for the modeling of parameter ramps
in that direction.
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